Менеджер - главное звено в развитии экономики на макро- и микроуровнях. Инвестиции в менеджмент - одна из главных задач в развитии росийского предпринимательства.
Теория игр
Стратегией игрока называется план, по которому он совершает выбор в любой возможной ситуации и при любой возможной фактической информации. Естественно, что игрок принимает решения по ходу игры. Однако теоретически можно предположить, что все эти решения приняты игроком заранее. Тогда совокупность этих решений составляет его стратегию. В зависимости от числа возможных стратегий игры делятся на конечные и бесконечные. Задачей теории игр является выработка рекомендаций для игроков, т. е. определение для них оптимальной стратегии. Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средней выигрыш.
Простейший вид стратегической игры - игра двух лиц с нулевой суммой (сумма выигрышей сторон равна нулю). Игра состоит из двух ходов: игрок А выбирает одну из своих возможных стратегий Ai (i = 1, 2, m), а игрок В выбирает стратегию Вj (j = 1, 2, ., n), причем каждый выбор производится при полном незнании выбору другого игрока.
Цель игрока А - максимизировать функцию φ (Ai, Bj), в свою очередь, цель игрока В - минимизировать эту же функцию. Каждый из игроков может выбирать одну из переменных, от которых зависит значение функции. Если игрок А выбирает некоторую из стратегий Ai, то это само по себе не может влиять да значение функции φ (Ai, Bj).
Влияние Ai, на величину значения φ (Ai, Bj) является неопределенным; определенность имеет место только после выбора, исходя из принципа минимизации φ (Ai, Bj), другим игроком переменной Bj. При этом Bj определяется другим игроком. Пусть φ (Ai, Bj)= aij. Составим матрицу А:
Строки матрицы соответствуют стратегиям Ai, столбцы - стратегиям Bj. Матрица А называется платежной или матрицей игры. Элемент aij матрицы - выигрыш игрока А, если он выбрал стратегию Ai, а игрок В выбрал стратегию Bj.
Пусть игрок А выбирает некоторую стратегию Ai ; тогда в наихудшем случае (например, если выбор станет известным игроку В) он получит выигрыш, равный min aij. Предвидя такую возможность, игрок А должен выбрать такую стратегию, чтобы максимизировать свой минимальный выигрыш a :
а = max min aij
i j
Величина а - гарантированный выигрыш игрока А - называется нижней ценой игры. Стратегия Аi0, обеспечивающая получение а, называется максиминной.
Игрок В, выбирая стратегию, исходит из следующего принципа: при выборе некоторой стратегии Вj его проигрыш не превысит максимального из значений элементов j-го столбца матрицы, т.е. меньше или равен max aij
Рассматривая множество max aij для различных значений j, игрок В, естественно выберет такое значение j, при котором его максимальный проигрыш β минимизируется:
β = min miax aij
i j
Величина β называется верхней ценой игры, а соответствующая выигрышу β стратегия Вj0 - минимаксной.
Фактический выигрыш игрока А при разумных действиях партнеров ограничен нижней и верхней ценой игры. Если же эти выражения равны, т.е.
max min aij = min max aij = u